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Computational techniques for stereographic
projection
THOMASH. KOSEL

Department of Metallurgical Engineering and Materials Science, University of Notre
Dame, Notre Dame, Indiana 46556, USA

The geometrical analysis leading to equations which permit the interactive construction
of general stereographic projections by means of a computer program compatible with
modern microcomputers is given, The stereographic operations covered include the plot-
ting of any pole or direction on a projection of any orientation, and the drawing of the

great circle of the plane which is normal to this plane or direction. Other operations
considered here are the indexing of any pole at location x, y, the rotation of any one
general pole about another, and the direct transfer of diffraction spots on a back-
reflection Latie pattern to the stereographic projection using only the x, y coordinates
of the Laue spots. All of the above operations may be performed in any crystal system
since simple equations are included for the calculation of the indices of a Cartesian
vector normal to any (h k /) plane or parallel to any [uvw] direction in a general crystal.
A description of a microcomputer program utilizing the expressions derived is given
together with a few examples of graphical output from the program.

1. Introduction

The stereographic projection technique is useful
for the graphical solution of many problems
involving crystallographic orientation. The tech-
nique suffers, however, from the inherent
inaccuracy of graphical techniques and from the
length of time required to produce solutions of
more difficult problems. In addition to over-
coming these problems, an interactive computer
program for the manipulation of stereographic
projections using a microcomputer offers the
possibility of using the program as a teaching
and research tool. Such a program can be valuable,
for instance, in the teaching of stereographic
projection techniques, solution of Laiie patterns,
solution of pole figures, or finding the orientation
of the tensile axis and slip traces on the surface
of a single crystal after straining.

The use of the stereographic projection tech-
nique is covered in standard texts [1, 2], and
techniques for calculating the x, y coordinates
of poles and other useful quantities have been
discussed by Mackenzie and Bowles [3] and
Johari and Thomas [4]. Mackenzie and Bowles
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[3] gave simple analytical expressions for the
x, y coordinates of a general pole on the pro-
jection, and for the centre and radius of a general
circle. Johari and Thomas [4] reviewed many
applications of stereographic projection and
presented a computer program which produced
standard stereographic projections of any orien-
tation for any crystal system. However, many
applications of stereographic projection require
for their solution the construction of great or
small circles, the rotation of one pole about
another, or the determination of the indices
of a pole at a general location on a known pro-
jection.

The present paper presents the geometrical
analysis leading to the equations which are the
basis for a computer program which is capable
of solving the most general stereographic pro-
jection problem using the immediate graphics
interaction afforded by the current generation
of advanced microcomputers. As an example
of one application of the program, the necessary
equations are developed for the transfer of the
positions of reflections on a back-reflection
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Latie pattern to the stereographic projection.
With the addition of a suitable routine for the
solution of the Latie pattern, this would allow,
for instance, the rapid creation of stereographic
projections of the orientation of the tensile
axis and faces of a single crystal tensile specimen.

The geometrical analysis is presented first,
followed by a brief comparison of the present
approach with previous work, and a description
of the organization of the computef program is
included at the end.

2. Derivation of equations

The following discussion is written in terms of
vectors in a Cartesian coordinate system. Later,
the necessary equations for the description of
vectors and plane normals in noncubic crystal
systems will be introduced. It is noted here that
in deriving computer-compatible solutions to the
problems posed herein, it is necessary to ensure
that division by zero under any possible set of
conditions be avoided. The solutions described
below have been carefully examined and deter-
mined to be free of such difficulties except as
noted.

2.1, Distance of pole from centre

A two-dimensional drawing of the geometrical
arrangement by which points on the sphere are
projected onto the projection plane is included
in Fig. 1. The distance r of the projection P’
of pole P of vector [Akl] from the centre C of
the projection is frequently required. The angle
CZP is «, the angle between the projection axis
and the [hkl] vector. Therefore, by application
of Euler’s Theorem to arc CP, angle COP is ¢/2.

Rcosa

PROJECTION
PLANE C

Figure 1 Geometry used to project points onto the
projection plane. ZC is the projection axis and ZP is the
vector whose pole P is projected to P' using projection
point O.

If the radius of the sphere is R, then

o Rsina sin «
tan{— | = =
2 R+Rcosa 1+ cosa

as may be seen from Fig. 1. We also see from

Fig. 1 that
anl®) 2 7
M7 R

and since the radius of the basic circle of the pro-
jection is easily shown to be R, = 2R, we have

sin &
r =R, {—
°(1+cosa)

2.2, Coordinate system

We shall define the unit vector at the centre of the
projection as [abc], and those at the east and
south poles as [uvw] and [def], respectively.
These vectors are defined in terms of a Cartesian
coordinate system which is fixed to the crystal
lattice. The x, y coordinate system used in the
plane of the stereographic projection is centred
at the centre of the projection with the x-axis
pointing to the right and the y-axis pointing
upwards.

1

2.3. x, y coordinates of [hk/]

We may construct a non-unit vector {pgr] which
represents the projection of a unit vector [hkI]
on to the projection plane by adding a vector V
of the appropriate length to [hkl] (see Fig. 2a).
Note that the endpoint of [pgr] is not the pro-
jected pole of [AkI]. ¥V is given by

V = —dlabc]

where

d = [kkl]-labc] = cosa

since [Akl] and [abe] are unit vectors. Thus,
[par] = [hkl] — [abc] cosa 2)

We now define the angles which [pgr] makes with
[uvw] and [def] as 6 and ¢, respectively (Fig.
2b). The cosines of these angles can be found
from the dot products of [pgr] with [uvw] and
[def]. Expansion of these dot products using
Equation 2 reveals that since the terms involving
fabc] -[uvw] and [abc]-[def] are zero we can
write

[[pgr]lcos® = [pgr]-luvw]
= [hkl]-Jluvw] = cosu
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and

[lpgr]lcos¢ = [pqr]-[def]

= [hkl]-[def] = cos$

where u and 8 are the angles which [#k!] makes
with [uvw] and [def], respectively (Fig. 2¢). The
quantities eos «, cos & and cos u are readily
calculated from the dot products of the normalized
vectors of the coordinate system with [hEl].
The magnitude of [pgr] may be evaluated by
squaring the individual terms of Equation 2 and
collecting terms to obtain

llpgr]l =(1 —cos’w)’? = sina.

Finally, we can find the x, y coordinates of pole
[hkI] from
x = rcos@
and
Yy = —rcos¢

The negative sign in the equation for y is due to
the choice of [def] as lying on the — y-axis. With
the aid of Equations 1 and 2 these can be
simplified to give

x = R,cosu/(l1+ cosa) (3a)

and

y = —R,cos8/(1 + cosa) (3b)

as previously given by Mackenzie and Bowles

[3].
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2.4. Great circles

Standard stereographic projections of cubic
crystals are generally shown with the {100} and
{110} great circles drawn, since the intersections
of these circles mark the locations of all the
{100}, {110} and {11 1} poles. Simple expressions
for the radius and centre of the great circle of
the (hkl) plane may be easily derived using Fig. 3.
As before, « is the angle of [hkl] from the central
pole [abc]. The simplest derivation of the radius
of the great circle uses the property of stereo-
graphic projection that circles on the sphere
project as circles on the projection, with the
angles between these circles being preserved
on the projection. Thus the basic circle and the
great circle meet at an angle of a degrees since
this is the angle between their normals. Since
the angle between the tangents is «, the angle
CNO is also @, and so we have R /Ry, = cos a,
or

Ry = Rg/cosa 4)
Similarly, since OC/R,, = tan ¢,
OC = R tan (5)

It is readily apparent from Fig. 3 that the angle
subtended by the great circle is 180 — 2q; this
allows the computer program to draw only the
desired arc of the circle. For a=90° both Ry,
and OC are indeterminate, but when this con-
dition occurs the great circle becomes a straight
line whose endpoints are readily determined.

2.5. Small circles
Expressions for the radius and centre of a small
circle whose normal lies in the projection plane

Figure 2 Geometry used for derivation of x, y indices of
hkl pole. (a) Projection of [hk/] onto the plane by
addition of V. (b) Coordinate axes and stercographic
projection of [pgr]. (¢) Definitions of «, 5 and p.

def



Figure 3 Geometry for construction of great circles.
R =radius of basic circle; Rg, = radius of great circle;
P = pole of great circle; O = centre of great circle.

are developed here for the construction of Wulff
nets (for demonstration purposes) and because
this simplifies the determination of the angle of
a pole from another pole on the basic circle.
Because the angles between circles are preserved
on the projection, triangle OBC in Fig. 4 is a
right triangle. Since the small circle is everywhere
B degrees from the horizontal great circle (AC),
angle BCA = 8, whence angle COB = . Therefore,

Ry = Rc/tanﬁ (6)

0C = R_/sin § (7

The angle subtended by the arc is 28. R, and OC
become infinite for §=0°, but as in the case of
great circles this problem can be solved by con-
struction of an appropriate straight line.

and

2.6. Determination of [Ak/] from x, y
coordinates

The [hkl] indices of a pole located at x, y on the
projection can be found by first determining the

< A
B B A,
B
Rse
B
0]

Figure 4 Geometry for construction of small circles
centred on an axis lying in the projection plane. R, =
radius of basic circle; Rg, = radius of small circle; O =
centre of small circle.

cosines of the angles between the pole and the
three (Cartesian) coordinate axes, and then solving
three simultaneous equations. The cosine of «
(the angle between [hk!] and [abc]) can be
determined from the distance r= (x?+y?)"%
Using Equation 1, we arrive at a quadratic
equation in cos a;

cos’o{Q+ 1)+ cosa(20)+(Q—1) = 0
where Q = (/R ,)*. This can be solved to give

R —(x* +3%)

8
RX+x2+y? ®)

cosq =

To find cos 6 we can use Equations 6 and 7 to
solve for sin f, where B is the angle of the
“horizontal” small circle in Fig. 4 from the centre
and is equal to 90 —§. We have the equation of
the small circle

(x_xc)2 +(y—yc)2 :Rs%:
where x,=0, y, is given by the negative of

Equation 7, and Ry is given by Equation 6.
Substituting and simplifying, we obtain

. — 2R
cosd = sinf = l?{:—:cz_:-_yz (9)
c
Similarly, we find
2xR
cosy = o +x2c+y2 (10)
c

The sign difference between Equations 9 and 10
arises from the choice of [def] as lying on the
— y-axis, whereas [u v w] is on the + x-axis.

Three simultaneous equations are obtained
from the dot products of [#kl] with the Cartesian
vectors [abc], [def] and [uvw];

hal +ka2 +l(13 = COL

hdl +kd2 +ld3 = C5

huy + kuy + lug Cy

where it is understood that all vectors are unit
vectors defined in terms of the Cartesian system
which is fixed to the crystal lattice. We have used
the notation a; =a, a, = b, a3 =c¢, d, =d, d, =
e, ds =f, uy =u, u, =7v, uz =w, C, =cos q,
Cs =cos 6 and C, = cos u to simplify the equa-
tions which follow. Subtracting equations and
obtaining solutions for 7 and k in terms of / we
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substitute to get
Huslasd, —azds) +us(ads —asdy)
+uz(ardy —a1dy)] +ui(a:Cs —daCo)
+uy(dyCq —a1Cs) = Culaxds —ardy)

Now, the term multiplying 7 is U+ {—(4 x D)}
where U= [uvw], D= [def] and A = [abc].
Since A and D are perpendicular unit vectors,
we see that A x D= U, and taking the dot pro-
duct we see that the term multiplying / is simply
— 1. Collecting terms and transposing, we obtain

I = (uyd; —u,dy)Co + (U1a; —u2a,)Cs

+ (a1d, 'aZdl)Cu (11)

Similarly we obtain for s and k
k = (uyds —u3d,)Cq + (usay —u1a3)Cs

+ (a3d1 —aldé)Cy (12)

and
h = (usdy —uyd3)Co + (U283 — U3a,)Cs

+ (a,d3 —a3d,)C, (13)

2.7. Rotation of one pole about another

A closed-form solution for the indices of the
vector F lying at the endpoint of the rotation
of vector § about vector Z by X degrees can be
obtained by consideration of the geometry
illustrated in Fig. 5. Vectors S, Z and F are assumed
to be unit vectors. The angle y between S and Z
is easily obtained from S-:Z. The vector N is a
non-unit vector whose length is easily shown to be
cosy, and T and G both are normal to N and of
length sin-y. The components of N are therefore
N;=2Z; cosy, and the components of T are
given by T;=S;—Z; cosvy, since N+ T=S§.

Figure S Geometry for determination of indices of vector
F, related to S by a rotation of A degrees about Z. F, Z
and § are unit vectors.
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The components of F can be found by deter-
mining the components of G since F=N+G.
This can be:done through the use of equations
for TxG and T-G. We have TxG=ZTG
sinA =Z sin?y sin}, and by writing out Tx G
we find

T,Gs — TGy = Zy sin*ysinh  (14)

TG, —T1G3 = Z,sin*ysinX  (15)
and

T,G, —T,G, = Z3sin’ysinA  (16)

Using Equations 15 and 15 we obtain G, and G3
in terms of G plus known quantities;

T,Gy +Z,4 sin27 sin A

G =
2 T1

and

T3G, —Z, sin®ysin A
T,

G3:

Expanding TG we get
T.Gy + T,G, + T3G3 = sin*y cos A

into which we insert the G, and G; expressions.
Rearrangement yields

(T? + T3 + THG, +(T,Z,
—T3Z,)sinysin A = Ty sin®y cos A

However, since (T34 T3+ T3)=1,=sin%y, we
can divide through by sin®y to get

Gl = Tl cos A+ (T3Zg —Tzzg;) sin A

Now we use F; =G; +N;=G;+ Z; cos v, which
with some rearrangement yields

Fy = S;cosA+Z; cosy (1 —cosh)

+ (S3Z2 ’_‘S2Z3) sin A (17)

By repeating the same procedure we obtain

Fy, = 8, cosA+Z, cosy(l—cosh)
+(S1Z3 —S3Z,)sin A (18)
and
Fy = S3cosh+Z5 cosy (1 —cosh)
+(S,Z, —S1Z,) sin A (19)

2.8. Application to noncubic crystals
Extension of the techniques so far described
so that they are applicable to noncubic crystals



Figure 6 Relation of the Cartesian coordinate system X,
Y,Z to the crystalaxes4',B and C’.

allows rapid, accurate application of stereo-
graphic projection techniques to any crystal
system, thus greatly decreasing the time required
for the solution of such problems. The first step
is to express the basis vectors 4, B' and C’ of the
crystal lattice as vectors in a Cartesian coordinate
system, X, Y and Z. This is sufficient to allow
representation of crystal directions as Cartesian
vectors. In order to express plane normals as
Cartesian vectors, we define the basis vectors of
the reciprocal lattice, R', §" and T, using the
cross products of the vectors A', B' and C’ (see,
for instance, Appendix 1 of Cullity {1]). Then,
given the indices of the (hk/l) plane, we can
write its normal in the Cartesian system as

H = hR'+ kS +1IT' (20)

Fig. 6 shows the most natural choice of the
relationship of the crystal and Cartesian coordi-
nate systems. Since A’ lies along X, its components
are

Ay = A

A, = A =0 (21)

The components of B’, which lies in the same
plane as the X- and Y-axes of the Cartesian system,
are

B, = B'cosv
B, = B'siny'
By = 0 (22)

The components of €' can be found by writing
expressions for the dot products A'-C" and B'-C’,
after first temporarily normalizing 4’ and B
and assuming C’ to also be a unit vector. We find

C{ = cosf
. cosa —cosf cosy
g L A 5
sin y
Cs — (1 _CI’Z_C£2)1/2

These components are then multiplied by C’ to
convert to a vector of the correct length. Note
that the computer must execute these functions
in the order given here. From R'=B'x C' we
obtain

Ry = B,C;

Rlz = = B{Ca'

R 3' = B1’Cé' —‘32’C1' (24)

Note that it is unnecessary to divide through by
the volume of the unit cell unless one wishes to
calculate interplanar spacings from the lengths
of the reciprocal lattice vectors.

FromS' = C' x A’ we find

S/ =0
S, = CiA]
S, = —CjA] (25)
and from T' = A" x B we find
T, =T, =0
T, = BJA, (26)

Inserting these into Equation 20 we obtain the
components of H;
H1 = th’Cg,’
H2 = C3'(kA 1’ - hBl,)
H3 = Cg'(hBl’ — kA 1’) + Bz’(ZA 1’ - hCl') (27)
Plane normals are plotted using H,, H, and H3 in
place of &, k and [ in calculating cos «, cos 6 and

cos u for insertion into Equation 3a, b. To plot
a direction [hkl], we write

DI

hA'+ kB + IC'

which gives

Dl = hAll + kBl"*‘lCl,

D, = kB, +1C)

Dy = 1Cy (28)
Dy, D, and Dj are then used in place of k, k and /.
The reverse transformations are useful for find-
ing the crystal indices of a pole or direction whose
Cartesian indices are known. For poles, given H;,
H, and H5 we can use
h = H{B)Cy

_ H, +H\B//B,
C3A44
L Ha kCiA{ —h(B|Cy —B3C))
B;A 4

(29)
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Note that the computer must execute the ! func-
tion after first computing # and k. For directions,
given Dy, D, and D; we use the reverse trans-
formation

I = Ds/C3
D2 -“IC2,
k = ——
h _ Dl _kBll_lcly
A

Note that the computer must execute these func-
tions in the order given. The computer program
must plot the poles and directions using the
Cartesian indices to calculate x and y, but it
must label the points using the crystal indices.
If the crystal indices are found from Cartesian
indices using Equation 29 or 30, they will
generally be irrational and should therefore be
converted to integers.

2.9. Back-reflection Laue patterns
An example of a possible application of the
stereographic projection techniques described
here is that of the solution of back-reflection
Laiie patterns. The x, y coordinates of points on
a back-reflection Laiie pattern can be read directly
into a microcomputer by means of a graphics
tablet. A few simple equations will be presented
which allow the direction calculation of the x, y
coordinates of points on the stereographic projec-
tion from the coordinates xp, yy, of the corre-
sponding points on the Laiie pattern. This makes
it possible to create an accurate stereographic
projection from a Lafie pattern with no recourse
to graphical methods. The projection can be set
up with the standard 001 orientation and the
points assigned “dummy” indices as they are
entered. With these indices the cross products of
poles on the same zone can be used to find the
dummy indices of the zone axes, and angle
between poles can be determined. The operator
can then solve the orientation in the usual way.
Alternatively, a computer program could be
written to automatically solve for the orientation.
Fig. 7 shows the necessary aspects of the back-
reflection Laile geometry. The angle between a
reflecting plane normal and the incident beam is
o and the diffracted beam is coplanar with the
incident beam and plane normal and makes an
angle 20 with the incident beam. Since the crystal-
to-film distance, /C, is known and the distance of
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Figure 7 Geometry of back-reflection Laiie pattern.
C =point on. crystal surface; I=film centre; CN=
plane normal; CD = diffracted beam; IC = incident
beam. The coordinates of D are xy,, y1.

the diffracted beam spot from the film centre is
r, = (x + y3)!"?, o is readily calculated from

1 [(xiﬂi)m}
—tan”! |

IC (31)

0 =

Using Equation 1 we can calculate the distance

r of the (hkl) pole on the projection from the
centre of the projection from

r = R, tan (0/2) (32)

Now, the vector from the film centre to the dif-
fracted beam makes an angle Y with the x-axis,
as does the vector IN which is the projection of
the plane normal on the film. Therefore this
angle must be preserved on the projection, which
leads to xg/ry, =x/r=cos ¥ and ypfry =y/r=
sin ¢, or

x = er
R
y 4
y = L (33)

ERSTE

3. Comparison with previous work

This discussion will follow the sequence in which
the geometrical analysis was presented. Methods
for the computation of the x, y coordinates of
the projection of the endpoint of a Cartesian
vector onto the plane have been previously given
by Mackenzie and Bowles [3] and by Johari and
Thomas [4]. The method described in the present
paper leads to the solution given by Equation 3,
which is the same as that given previously by
Mackenzie and Bowles. The dexivation is included
here for completeness, since it was not given by
Mackenzie and Bowles. The method used by
Johari and Thomas was far more cumbersome.



The treatment given here for the construction
of great circles and small circles having centres
on an axis in the projection plane has the advan-
tage that it provides very simple expressions for
the angular range of the arc of the circle which
lies within the basic circle, which is very useful
in the computer program. Mackenzie and Bowles
[3] gave equations for the centre and radius of a
general circle of angular range n from a central
pole Akl (that is, the circle is the locus of the
endpoints of all vectors at n degrees from [ kI]).
The radius is given by

sinn
(222 )
cosa+ cosn

and the centre coordinates are

COS L )
x = ——————————
cosa+ cosn

7

cos §
y = _—
cos o+ cosn

where «, 8§ and u are the angles between [Akl]
and the vectors [abc], [def] and [uvw] as
before. These relations reduce to the ones given
earlier for the radii and centre distanes of circles.
However, they do not give the angular range of
the arcs. The equation of the general circle has
not been found necessary here, and has not been
used.

The derivation of expressions for the com-
putation of Akl from x, y involves the solution
of three simultaneous equations involving cosa,
cosd and cospu. Mackenzie and Bowles [3] gave
expressions which reduce to those given here
in Equations 8 to 10 for these cosines, but did
not provide the solution to the resulting equations,
which is necessary for the determination of the
indices of a point on a general projection. The

and

370
380

INPUT “ENTER A,B,C”;A,B,C

solution can also be obtained by means of a
subroutine involving Cramer’s Rule. However,
the closed form solution is given here because
it is somewhat more compact in computer code.
In fact, due to the similar forms of Equations
11 and 13, the equations are solved in a short
FOR loop in the program by permuting the
subscripts.

The solution of the problem of the rotation of
one general pole about another was not previously
discussed by either Mackenzie and Bowles or
Johari and Thomas. The expressions of Mackenzie
and Bowles for the centre and radius of a general
circle give the locus of possible locations of the
final pole, but no simpler method of finding
the final location has been found than that given
in Equations 17 to 19.

The solution to the problem of conversion
of crystal indices of planes to the x, y coordinates
of the pole on the projection was not given by
Mackenzie and Bowles [3], but a solution was
given by Johari and Thomas [4]. Johari and
Thomas began with the same choice of the
relationship between the coordinate systems as
used here (Fig. 6), and they derived expressions
for unit vectors which are equivalent to those
in Equations 21 to 23. However, at this point
their approach diverged strongly from that used
here. They derived expressions for the Cartesian
vectors [100], [010] and [001], and employed
these to arrive at expressions for the endpoint
of the (hkI) plane normal in Cartesian space.
Their approach necessitated the calculation
of the length of the general reciprocal lattice
vector in a triclinic crystal (which is very lengthy),
and the solutions for the endpoint of the plane
normal were also quite long in comparison with
that embodied in Equations 24 to 26. The com-
plete code for the calculation of the x, y coordi-
nates of the pole of the (7 %/) plane in a general
crystal is given below using the present approach;

INPUT “ENTER ALPHA, BETA, GAMMA""; AL,BE,GA

390 AL = AL *P1/180:BE = BE * P1/180:GA = GA * Pl /180

400 AT = A:A2 = 0:A3 =0

410 B1 = B * COS (GA):B2 = B * SIN (GA):B3 = 0

420 C1 = COS (BE)

430 C2 = (COS (AL} — COS (BE) * COS (GA}) / SIN (GA)

440 C3 = SQR (1 — C1*C1 —C2+C2)

450 C1 = C*C1:C2 = C*C2:C3 = C*C3

460 REM FUNCTIONS H1,H2 and H3 CONVERT A XTAL POLE HKL TO

AN RL POLE H1, H2, H3

470 DEF FN H1(X) = H = B2+ C3
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480 DEF FN H2(X)
490 DEF FN H3({X)

C3+(K*A1—H *B1)

C2+(H+B1—Kx*xA1)+B2x{L+A1—

H=*C1)
1280 IF PDE = “P” THEN L = FN H3(0): K = FN H2(0):
H = FN H1{0)

1290 HM = SQR(H*H + K* K+ L * L)

1300 CA = (A*H +B*K+C*L)/(AM* HM)
1310 IF CA <0 GOTO 1250

1320 CD = (D*H+E*K+F+L)/(DM*HM)
1330 CU = (U*H+ V*K+W=L)/ (UM * HM)
1340 X = RC = CU/(1 + CA)

1350 Y = —RC *CD /(1 + CA)

Lines 370 and 380 request the lattice parameters,
and lines 390 to 450 define Al etc. according to
Equations 21 to 23. Lines 470 through 490 define
functions according to Equations 24 to 26, and
lines 1280 through 1330 compute the vector for
the plane normal and then compute cos a, cos §
and cos u (CA, CD and CU) from dot products.
(DM and UM have been previously defined in the
program as the magnitudes of [def] and [uvw],
respectively.) Finally, lines 1340 and 1350 com-
pute x and y. This code is considerably more
condensed than that employed by Johari and
Thomas. It is also noted that Johari and Thomas
did not provide for the plotting of directions as
well as poles. It should be noted that variables
A, B and C are initially defined as the lattice para-
meters A', B’ and C' and are later redefined to
denote the projection axis [abec]. The lattice
parameters are first used to define the necessary
functions for conversions between the crystal
and Cartesian coordinate systems.

The procedure given here for the direct transfer
of Laiie coordinates to the stereographic projec-
tion has not been previously presented and should
prove quite useful.

An important difference between the present
work and that of previous authors is that the

718 118
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techniques presented here represent a complete
set of tools which allow the creation of general
projections complete with great circles, and the
solution of the most general stereographic problem
using live interaction graphics on a modern micro-
computer. This was the impetus for the solution
of the problems involving the drawing of circles,
the indexing of unknown poles, and the rotation
of one general pole about another.

4. Program description

The complete computer program allows gener-
ation on the screen of a stereographic projection
of any orientation for any crystal system, com-
plete with all the {100} and {110} great circles,
within about one minute on an Apple 1T or Ife
microcomputer. Examples are shown in Figs.
8 and 9 for cubic and orthorhombic crystals.
It will be noted that the resolution of these
figures is limited by the screen resolution of the

" microcomputer, since the plots were made on a

dot-matrix printer using a screen-dump routine.
Modification of the program to utilize an x-—y
plotter or to more effectively use the resolution
of the dot-matrix printer will provide much
better results.

For hexagonal crystals, a minor modification

Figure 8 Stereographic projections of a cubic crystal. (a) 001;(b)311.
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Figure 9 Stereographic projections of an orthorhombic crystal with crystal axes a =1, b=1.5, ¢ =2.5. (a) 001;
note that the direction {111] is indicated as 111 D; (b) same orientation, but showing all the 112 poles, drawn using

menu selection 8.

is made to convert crystal directions and poles
into four-axis Miller—Bravais indices, and the
appropriate additional great circles are drawn
as in Fig. 10. Separate versions of the program
have been created for the cubic and hexagonal
systems, and a general version is used for the
remaining systems. In crystal systems other
than cubic, the user is able to specify whether
he wishes to plot poles or directions, and direc-
tion indices are indicated by a trailing “D” (Fig.
9).

Any point on the screen may be indexed by
moving a cursor to that point, and rotation of one
pole about another general pole may be accom-
plished by specifying the poles either by use of a
cursor or by direct entry of the pole indices.
Fig. 11 shows the “menu” for the program. The
various selections cause the program to branch
to the appropriate subroutines, which will be
described shortly. Fig. 12 shows a flow chart
for the initial portion of the program, which
allows the user to specify the crystal lattice
parameters and orientation. A new orientation

A”d’:’__*_»:k
287

19

{a) 2114

may be chosen at any time by means of menu
selection 9, which simply returns to the point
at which the orientation of the central pole is
chosen. For noncubic crystals, after the lattice
parameters ¢, b and ¢ and o', ' and v’ are entered
the program defines functions which allow calcu-
lation of Cartesian indices from crystal indices and
vice versa, using Equations 21 to 30.

The following paragraphs will outline the
operation of the various subroutines which are
activated by the menu selections, and are organized
in the order indicated by the menu. Fig. 13 shows
a flow chart for the plotting of a pole or direction
with or without its great circle. Menu selection 2
enters this routine after first asking for crystal
indices, whether a pole or direction is to be
plotted, and whether the great circle is to be
plotted. The responses to the latter two questions
are used to define token variables which determine
the branches taken within the subroutine. Two
special cases deserve comment. First, poles
(vectors) making an obtuse angle with the central
vector [abc] would plot outside the basic circle.

Figure 10 Stereographic projections of an hexagonal crystal with ¢/ ratio = 1.633.(a) 001;(b) 211 0.
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MENU

PLOT HKL POLE

DRAW ALL 100 & 110 GREAT CIRCLES
INDEX POLE WITH CURSOR
ROTATE POLE A ABOUT POLE B
DRAW ROTATED WULFF NET
CLEAR SCREEN

PLOT ALL HKIL POLES

NEW ORIENTATION

10 CHANGE INDEX ENTRY MODE

11 CHANGE INDEX OUTPUT MODE
12 SAVE TO DISC

13 END

WO W

Figure 11 Menu for the hexagonal version of the program.
See text for explanation of the various selections.

This is avoided by checking the dot product with
[abc] and, if it is negative, reversing the signs of
the indices before proceeding. Thus the negative
of such a pole is plotted, and this must lie inside
the basic circle. Secondly, for plotting the great
circle of a pole lying on the outer circle, the

Enter

Lattice
Parameters
Define Functions
hkl<=> Cartesian

!

Enter Indices

/of Central Pole

Choose
South Pole?

/

Yes

Automatic
East Pole
Definition

{

Draw
Basic Circle

[ ]
Enter
Menu

Selection

7/

Subroutines
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radius calculated will be infinite. Thus circum-
stance may be recognized by the condition
[abc] +[nkI] =0, and in this case a straight
line is plotted.

The circle drawing routine referred to in
Fig. 13 simply draws straight line segments
between specified points. These points are calcu-
lated for great circles by assuming the centre of
the great circle to lie on the x-axis and using
Equations 4 and 5 to calculate several points
on the circle, after which all points are rotated
by the required amount using standard rotation
of axes formulae. The same circle drawing routine
is used for drawing the small circles on the Wulff
net; the Wulff net subroutine uses Equations 6
and 7 to calculate the points.

The subroutine which is called by menu selec-
tion 3 automatically draws the great circles of all
the {100} and {110} poles by simply defining the

Automatic Enter
South Pole South Pole
Definition

Indices

Figure 12 [low chart of the initial portion
of the program.



Figure 13 Flow chart of the subroutine
for plotting a pole or direction with or
without its great circle and label.

Label Pole
or Direction?

Write Label
on
Screen

or Direction
Direction?
\
Calculate Calculate
Cartesian Indices Cartesian Indices
of Pole of Direction
Plot
hkl anE—
Pole or Direction

Return
to Menu

Great Circle?

Calculate
Circle
Coordinates

i

Circle Drawing
Subroutine

indices and calling the subroutine illustrated in
Fig. 13. Similarly, menu selection 8 permutes the
indices and plots all poles (or directions) of type
hkl (see Fig. 99).

Menu selection 4 activates a subroutine which
allows indexing of a pole by means of a cursor,
utilizing Equations 8 to 13 to calculate the indices
of the pole or direction, and then converts the
indices to integers. Naturally, the accuracy of

positioning the cursor is limited by the screen
resolution of the computer. Since the indices
are generally irrational, there is necessarily some
error in the integer indices, and the user may
request the decimal indices if desired. Equations
9 and 10 could be used to allow the user to enter
the pole position by means of the angles from
the east and south if desired, which would be
useful if it were desired to work directly from
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Figure 14 Rotation of a general pole about another
general pole by 360°. Two examples are shown.

an actual tracing since these angles could be
measured using a Wulff net.

The subroutine called by menu selection 5
to rotate one pole about another first allows
definition of the poles by means of the cursor
routine or direct input of indices. It then calcu-
lates the decimal Cartesian indices of these poles
using the subroutine just described, and then
applies Equations 14 to 19 to find the final
position of the pole after rotation. The rotation
procedure is drawn on the screen by calculating
the several intermediate locations on the circle
swept out by the pole as it rotates, as shown
in Fig. 14.

Menu selection 6 calls a subroutine which
calculates the coordinates of the points on all
the “meridians” and “parallels” (great and small
circles) on a Wulff net with 30° increments,

4118

rotates these circles by the amount requested,
and calls the circle drawing subroutine to draw
the rotated Wulff net. This routine is included
primarily for instructional purposes.

Menu selection 8 simply calls the pole and
great circle routine (Fig. 13) with the appro-
priate token variables defined so that the {111}
poles are labelled but the circles are not drawn.

Menu selections 10 and 11 allow the user to
change the index entry and printout modes
to either the standard three-axis or the four-axis
Miller—Bravais system in the hexagonal version
of the program.

A listing of the program is not included here
because of its length and because of the com-
plicated naming of the many variables required.
A copy of the listing will be provided by the
author upon request.
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