
J O U R N A L  OF M A T E R I A L S  S C I E N C E  19 ( 1 9 8 4 )  4106-4118 

Computational techniques for stereographic 
projection 
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The geometrical analysis leading to equations which permit the interactive construction 
of general stereographic projections by means of a computer program compatible with 
modern microcomputers is given. The stereographic operations covered include the plot- 
ting of any pole or direction on a projection of any orientation, and the drawing of the 
great circle of the plane which is normal to this plane or direction. Other operations 
considered here are the indexing of any pole at location x, y, the rotation of any one 
general pole about another, and the direct transfer of diffraction spots on a back- 
reflection Laiie pattern to the stereographic projection using only the x, y coordinates 
of the Lai3e spots. All of the above operations may be performed in any crystal system 
since simple equations are included for the calculation of the indices of a Cartesian 
vector normal to any (hkl) plane or parallel to any [uvw] direction in a general crystal. 
A description of a microcomputer program utilizing the expressions derived is given 
together with a few examples of graphical output from the program. 

1. I n t r o d u c t i o n  

The stereographic projection technique is useful 
for the graphical solution of many problems 
involving crystallographic orientation. The tech- 
nique suffers, however, from the inherent 
inaccuracy of graphical techniques and from the 
length of time required to produce solutions of 
more difficult problems. In addition to over- 
coming these problems, an interactive computer 
program for the manipulation of stereographic 
projections using a microcomputer offers the 
possibility of using the program as a teaching 
and research tool. Such a program can be valuable, 
for instance, in the teaching of stereographic 
projection techniques, solution of Lade patterns, 
solution of pole figures, or finding the orientation 
of the tensile axis and slip traces on the surface 
of a single crystal after straining. 

The use of the stereographic projection tech- 
nique is covered in standard texts [1, 2], and 
techniques for calculating the x, y coordinates 
of poles and other useful quantities have been 
discussed by Mackenzie and Bowles [3] and 
Johari and Thomas [4]. Mackenzie and Bowles 

[3] gave simple analytical expressions for the 
x, y coordinates of a general pole on the pro- 
jection, and for the centre and radius of a general 
circle. Johari and Thomas [4] reviewed many 
applications of stereographic projection and 
presented a computer program which produced 
standard stereographic projections of any orien- 
tation for any crystal system. However, many 
applications of stereographic projection require 
for their solution the construction of great or 
small circles, the rotation of one pole about 
another, or the determination of the indices 
of a pole at a general location on a known pro- 
jection. 

The present paper presents the geometrical 
analysis leading to the equations which are the 
basis for a computer program which is capable 
of solving the most general stereographic pro- 
jection problem using the immediate graphics 
interaction afforded by the current generation 
of advanced microcomputers. As an example 
of one application of the program, the necessary 
equations are developed for the transfer of the 
positions of reflections on a back-reflection 
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Lade pattern to the stereographic projection. 
With the addition of a suitable routine for the 
solution of the Lade pattern, this would allow, 
for instance, the rapid creation of stereographic 
projections of  the orientation of the tensile 
axis and faces of a single crystal tensile specimen. 

The geometrical analysis is presented first, 
followed by a brief comparison of the present 
approach with previous work, and a description 
of the organization of the computeY program is 
included at the end. 

2. Derivation of equations 
The following discussion is written in terms of 
vectors in a Cartesian coordinate system. Later, 
the necessary equations for the description of 
vectors and plane normals in noncubic crystal 
systems will be introduced. It is noted here that 
in deriving computer-compatible solutions to the 
problems posed herein, it is necessary to ensure 
that division by zero under any possible set of 
conditions be avoided. The solutions described 
below have been carefully examined and deter- 
mined to be free of such difficulties except as 
noted. 

2.1. Dis tance of  pole f r o m  cen t re  
A two-dimensional drawing of the geometrical 
arrangement by which points on the sphere are 
projected onto the projection plane is included 
in Fig. 1. The distance r of the projection P' 
of pole P of vector [hkl] from the centre C of 
the projection is frequently required. The angle 
CZP is a, the angle between the projection axis 
and the [hkl] vector. Therefore, by application 
of Euler's Theorem to arc CP, angle COP is c~/2. 

"~LP 

PROJECT ~ ~  
PLANE el. r "I P" 

Figure 1 Geometry used to project points onto the 
projection plane. ZC is the projection axis and ZP is the 
vector whose pole P is projected to P' using projection 
point  O. 

If the radius of the sphere is R, then 

( _ ~ ) _ R s i n a _ s i n a  
tan R + R cos a 1 + cos c~ 

as may be seen from Fig. 1. We also see from 
Fig. 1 that 

tan = 

and since the radius of the basic circle of the pro- 
jection is easily shown to be R e = 2R, we have 

( s ina  ) (1) 
r = R e 1 +cose~ 

2.2. Coord ina t e  sys tem 
We shall define the unit vector at the centre of the 
projection as [abc], and those at the east and 
south poles as [uvw] and [def], respectively. 
These vectors are defined in terms of a Cartesian 
coordinate system which is fixed to the crystal 
lattice. The x, y coordinate system used in the 
plane of the stereographic projection is centred 
at the centre of the projection with the x-axis 
pointing to the right and the y-axis pointing 
upwards. 

2.3. X, y coordinates of [hk l ]  
We may construct a non-unit vector [pqr] which 
represents the projection of a unit vector [hkl] 
on to the projection plane by adding a vector V 
of the appropriate length to [hkl] (see Fig. 2a). 
Note that the endpoint of [pqr] is not the pro- 
jected pole of [hkl]. Vis given by 

V = --d[abc] 
where 

d = [hkl].[abc] = cosc~ 

since [hkl] and [abc] are unit vectors. Thus, 

[pqr] = [hkl] -- [abc] cosc~ (2) 

We now define the angles which [pqr] makes with 
[uvw] and [deC] as 0 and r respectively (Fig. 
2b). The cosines of these angles can be found 
from the dot products of [pqr] with [uvw] and 
[de/]. Expansion of these dot products using 
Equation 2 reveals that since the terms involving 
[abc] .[uvw] and [abc].[def] are zero we can 
write 

I [pqr] I cos 0 = [pqr]. [uvw] 

= [hkl]'[uvw] = cosp 
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and 

( b )  

y : - -  rCOSq~ 

The negative sign in the equation for y is due to 
the choice of  [de f]  as lying on the --y-axis.  With 
the aid of  Equations 1 and 2 these can be 
simplified to give 

x = R e cos/J/(1 + cos a) (3a) 

and 

y = - - R  e cos 6/(1 + cos ~) (3b) 

as previously given by Mackenzie and Bowles 

[31. 

I [hk'] 

( c )  

and 

I[pqr] I cos 4~ = [pqr]. [deC] 

= [hkl].[deC] = cos 

where /~ and 5 are the angles which [h kl] makes 
with [uvw] and [deC], respectively (Fig. 2c). The 
quantities cos ~, cos 5 and cos /a are readily 
calculated from the dot products of  the normalized 
vectors of  the coordinate system with [hkl]. 
The magnitude of  [pqr] may be evaluated by 
squaring the individual terms of  Equation 2 and 
collecting terms to obtain 

I[pqr]l = (1 - -  cos2a )  1/2 = sin ~. 

Finally, we can find the x, y coordinates of  pole 
[hkl] from 

X = r C O S 0  

4 1 0 8  

2.4. Great circles 
Standard stereographic projections of  cubic 
crystals are generally shown with the {1 0 0} and 
{1 1 0} great circles drawn, since the intersections 
of  these circles mark the locations of  all the 
{1 0 0}, {1 1 0} and {1 1 1} poles. Simple expressions 
for the radius and centre of  the great circle of  
the (h k/) plane may be easily derived using Fig. 3. 
As before, c~ is the angle of  [hkl] from the central 
pole [abc]. The simplest derivation of the radius 
of  the great circle uses the property of  stereo- 
graphic projection that circles on the sphere 
project as circles on the projection, with the 
angles between these circles being preserved 
on the projection. Thus the basic circle and the 
great circle meet at an angle of  ~ degrees since 
this is the angle between their normals. Since 
the angle between the tangents is ~, the angle 
CNO is also ~, and so we have Re/Rg e = cos ~, 
or  

Rge = R j c o s ~  (4) 

Similarly, since OC/R e = tan c~, 

OC = R e t a n ~  (5) 

It is readily apparent from Fig. 3 that the angle 
subtended by the great circle is 180-2c~ ;  this 
allows the computer program to draw only the 
desired arc of  the circle. For ~ = 90 ~ both R g  e 

and OC are indeterminate, but when this con- 
dition occurs the great circle becomes a straight 
line whose endpoints are readily determined. 

2.5. Small circles 
Expressions for the radius and centre of  a small 
circle whose normal lies in the projection plane 

Figure 2 Geometry used for derivation of  x, y indices o f  
hkl pole. (a) Projection o f  [hkl] onto the plane by 
addition of  V. (b) Coordinate axes and stereographic 
projection of  [pqr]. (c) Definit ions o f  c~, 6 and u. 

def 
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Figure 3 Geometry for construction of great circles. 
R e = radius of basic circle; Rg e = radius of great circle; 
P = pole of great circle; O = centre of great circle. 

cosines o'f the angles between the pole and the 
three (Cartesian) coordinate axes, and then solving 

three simultaneous equations. The cosine o f  
(the angle between [hkl] and [abc]) can be 
determined from the distance r = ( x 2 + y 2 )  m. 
Using Equation 1, we arrive at a quadratic 

equation in cos ~x; 

cos2o~(Q + 1) + cos o~ (2Q) + (Q - 1) = 0 

where Q = (r/Re) 2 . This can be solved to give 

R ~ - ( x  2 +y2) 
c o s ~  = 2 ( 8 )  

Re + x  2 + y 2  

are developed here for the construction of  Wulff 
nets (for demonstrat ion purposes) and because 
this simplifies the determinat ion o f  the angle of  
a pole from another pole on the basic circle. 
Because the angles between circles are preserved 
on the projection, triangle OBC in Fig. 4 is a 
right triangle. Since the small circle is everywhere 
/3 degrees from the horizontal  great circle (AC), 
angle BCA =/3, whence angle COB =/3. Therefore, 

Rse = Rc/tan/3 (6) 
and 

OC = Rc/sin/3 (7) 

The angle subtended by the arc is 213. Rs~ and OC 
become infinite for/3 = 0 ~ but  as in the case of  
great circles this problem can be solved by con- 
struction o f  an appropriate straight line. 

2.6. Determination of [hkl] from x, y 
coordinates 
The [hkl] indices of  a pole located atx ,  y on the 
projection can be found by first determining the 

A 

B 

Psc 

Figure 4 Geometry for construction of small circles 
centred on an axis lying in the projection plane. R e = 
radius of basic circle; Rse = radius of small circle; O = 
centre of small circle. 

To find cos 6 we can use Equations 6 and 7 to 
solve for sin /3, where /3 is the angle of  the 
"horizontal"  small circle in Fig. 4 from the centre 
and is equal to 9 0 -  8. We have the equation of  

the small circle 

( x - x c )  = + (v - y J  =R,~ 

where x e = 0, Ye is given by the negative of  
Equation 7, and Rse is given by Equation 6. 
Substituting and simplifying, we obtain 

-- 2yR e 
(9 )  

R2e + x 2 + y2 
cos8 = sin/3 - 

Similarly, we find 

2xR e 
- (10) cos~  R 2 + x  2 + y 2  

The sign difference between Equations 9 and 10 

arises from the choice of  [de f]  as lying on the 
- -y-axis ,  whereas [u v w] is on the + x-axis. 

Three simultaneous equations are obtained 
from the dot  products of  [hkl] with the Cartesian 
vectors [abc], [def] and [uvw]; 

hal + kaz + la3 = Cc~ 

hdt  + kd2 + ld3 = C~ 

hUl + ku2 + lu3 = C,  

where it is understood that all vectors are unit 
vectors defined in terms of the Cartesian system 
which is fixed to the crystal lattice. We have used 
the notat ion al  = a, a2 = b, a3 = c, dl = d, d2 = 
e, d3 = f ,  ul  =u ,  u2 =v ,  u3 = w ,  C a = c o s  c~, 
C~ = cos 8 and C u = cos /a to simplify the equa- 
tions which follow. Subtracting equations and 
obtaining solutions for h and k in terms of  I we 

4109 



substitute to get 

l [ul(a3d2 -- a2d3) + u2(a ld3 -- a~dl) 

+ u3(a2da --ald2)]  + ua(a2C~ --d2C~) 

+ u2(dlC a - alC 8) = C,(a2dl -- aid2) 

Now, the term multiplying l is U. {--(,4 x D)} 
where U =  [uvw], D =  [dell and A = [abc]. 
Since A and D are perpendicular unit vectors, 
we see that A x D = U, and taking the dot pro- 
duct we see that the term multiplying I is simply 
- 1. Collecting terms and transposing, we obtain 

l = (u2d 1 - Uld2)Cc~ + (Ula2 -- u2al)C6 

+ (aid2 - a 2 d l ) C  u (11) 

Similarly we obtain for h and k 

k = (Uld3 --uadl)Co~ + (u3al --ula3)C6 

+ (a3dt -- aid~)Cu (12) 

and 

h = (u3d2 -- u2d3)G  + (u2a3 - u3a2)C8 

+ (a2d3 -- a3da)C u (13) 

2.7.  R o t a t i o n  o f  o n e  pole  a b o u t  a n o t h e r  
A closed-form solution for the indices of  the 
vector F lying at the endpoint of  the rotation 
of  vector S about vector Z by X degrees can be 
obtained by consideration of  the geometry 
illustrated in Fig. 5. Vectors S, Z andFare  assumed 
to be unit vectors. The angle 3' between S and Z 
is easily obtained from S 'Z .  The vector N is a 
non-unit vector whose length is easily shown to be 
cos 3', and T and G both are normal to N and of  
length sin T. The components of  N are therefore 
N i = Z  i cos3,, and the components of  T are 
given by T i = S i - - Z i  cos"/, since N + T = S .  

Figure 5 Geometry for determination of indices of vector 
F, related to S by a rotation of X degrees about Z. F, Z 
and S are unit vectors. 

The components of  F can be found by deter- 
mining the components of  G since F = N +  G. 
This can be :done  through the use of  equations 
for T x G  and T 'G .  We have T x G = Z T G  
s i n ? t = Z  sin27 sin?t, and by writing out T x G  

we find 

T2G3 -- T3G2 = Za sln23' sin X (14) 

T3G1 --T1G3 = Z2 sin23 ' sin3, (15) 

and 

TaG~ -- T2G1 = Z3 sin27 sin X (16) 

Using Equations 15 and 15 we obtain G2 and G3 
in terms of  G1 l~lus known quantities; 

T2G1 + Z3 sin23' sin 
G2 = 

TI 

and 

T3Ga --Z2 sin23' sin ?t 
G3 = 

T1 

Expanding T.G we get 

T1GI + T2G2 + T3G3 = sin27 cos ?t 

into which we insert the G2 and G3 expressions. 
Rearrangement yields 

(7 7 + r~ + T~)G~ + (r~z~ 

- -  T3Z2) sin27 sin X = T 1 sin27 cos ?t 

However, since (T~ + T~ + T~) = T2 = sin23 ", we 
can divide through by sin27 to get 

G I  = TI cos X + (T3Z2 -- T2Z3) sin X 

Now we use F i = G i + Ni = Gi + Zi cos 7, which 
with some rearrangement yields 

F1 = S.1 cosX + Z 1  cos 3'(1 - -cos?t)  

+ ($3Z2 - $ 2 Z 3 )  sin X (17) 

By repeating the same procedure we obtain 

F2 = $2 cos?t + Z2 cos 3' (1 -- cos?t) 

+ ($1Z3 --$3Z1)  sin ?t (18) 

and 

F3 = $3 cos?t + Z 3  cos 3' (1 - -cos  X) 

+ ($2Z1 - -S1Zz)  sin X (19) 

2 .8 .  A p p l i c a t i o n  t o  n o n c u b i c  c rys ta l s  
Extension of  the techniques so far described 
so that they are applicable to noncubic crystals 
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Figure 6 Relation of the Cartesian coordinate system X, 
Y, Z to the crystal axes A ', B' and C '. 

allows rapid, accurate application of  stereo- 
graphic projection techniques to any crystal 
system, thus greatly decreasing the time required 
for the solution of such problems. The first step 
is to express the basis vectors A', B' and C' of the 
crystal lattice as vectors in a Cartesian coordinate 
system, X, Y and Z. This is sufficient to allow 
representation of  crystal directions as Cartesian 
vectors. In order to express plane normals as 
Cartesian vectors, we define the basis vectors of  
the reciprocal lattice, R' ,  S' and T',  using the 
cross products of  the vectors A' ,  B' and C' (see, 
for instance, Appendix 1 of  Cullity [1]). Then, 
given the indices of  the ( h k l )  plane, we can 
write its normal in the Cartesian system as 

H = hR'  + kS'  + IT '  (20) 

Fig. 6 shows the most natural choice of the 
relationship of  the crystal and Cartesian coordi- 
nate systems. Since A'  lies along X, its components 
a r e  

AI' = A '  

A2' = A3' = 0 (21) 

The components of  B', which lies in the same 
plane as the X- and Y-axes of  the Cartesian system, 

are BI' = 8 '  cos 7' 

B2' = B' sin 7' 

83 ' =  0 (22) 

The components of  C' can be found by writing 
expressions for the dot products A " C '  and B"C ' ,  
after first temporarily normalizing A'  and B' 
and assuming C' to also be a unit vector. We find 

CI' = cos 13' 

cos o~' -- cos fir COS ,yr 
Cd = (23) 

sin 7' 

C'3 = ( l - - C ;  2 - G 2 )  u2 

These components are then multiplied by C' to 
convert to a vector of  the correct length. Note 
that the computer must execute these functions 
in the order given here. From R '  = f i x  C' we 
obtain 

R'I = ' ' B2C3 

R2 - BI 'Cj  

R 3' = 8t'C2' - B2'CI' (24) 

Note that it is unnecessary to divide through by 
the volume of  the unit cell unless one wishes to 
calculate interplanar spacings from the lengths 
of  the reciprocal lattice vectors. 

F r o m S '  = C ' x  A ' w e  find 
$1' = 0 

$2' = C3'A ; 

S ;  = - - C ; A ;  (25) 

and from T '  = A '  x B '  we find 

T,'  = T2' = 0 

r j  = B;Aa' (26) 

Inserting these into Equation 20 we obtain the 
components of  H; 

H1 -- hB2'Cd 

Hz = C3'(kA 1' - -  hB1) 

H3 = C2'(hBI' -- kA 1') + B2'(lA 1' -- hCl') (27) 

Plane normals are plotted using H1, H2 andH3 in 
place of  h, k and l in calculating cos a, cos 6 and 
cos g for insertion into Equation 3a, b. To plot 
a direction [hkl], we write 

D' = h A ' +  kB' + IC' 

which gives 
Dt = hAl'  + kBl' + lC1' 

D2 = kB2' + IC:' 

D3 = lC3' (28) 

DI,  D2 and D3 are then used in peace of  h, k and l. 
The reverse transformations are useful for find- 

ing the crystal indices of  a pole or direction whose 
Cartesian indices are known. For poles, given H1, 
H2 and H3 we can use 

h = H1/B2'C3' 

172 + H1BI'/B~ 
k -  

CdA ; (29) 

H3 + kC;A; - h(B;C~ - -8;C;)  
l =  

t t 
B2 A 1 
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Note that the computer must execute the l func- 
tion after first computing h and k. For directions, 
given D~, D2 and D3 we use the reverse trans- 
formation 

I = D31C; 

D2 --  lC2' 
k - (30) 

B2 

D 1 - -  k B ;  - -  IC1' 
h =  A; 

Note that the computer must execute these func- 
tions in the order given. The computer program 
must plot the poles and directions using the 
Cartesian indices to calculate x and y ,  but it 
must label the points using the crystal indices. 
If  the crystal indices are found from Cartesian 
indices using Equation 29 or 30, they will 
generally be irrational and should therefore be 
converted to integers. 

2.9.  Back - re f l ec t ion  Lai.ie p a t t e r n s  
An example of  a possible application of  the 
stereographic projection techniques described 
here is that of  the solution of  back-reflection 
Latie patterns. The x , y  coordinates of points on 
a back-reflection Lathe pattern can be read directly 
into a microcomputer by means of  a graphics 
tablet. A few simple equations will be presented 
which allow the direction calculation of the x, y 
coordinates of  points on the stereographic projec- 
tion from the coordinates XL, YL of the corre- 
sponding points on the Lathe pattern. This makes 
it possible to create an accurate stereographic 
projection from a LaiJe pattern with no recourse 
to graphical methods. The projection can be set 
up with the standard 0 0  1 orientation and the 
points assigned "dummy"  indices as they are 
entered. With these indices the cross products of  
poles on the same zone can be used to find the 
dummy indices of  the zone axes, and angle 
between poles can be determined. The operator 
can then solve the orientation in the usual way. 
Alternatively, a computer program could be 
written to automatically solve for the orientation. 

Fig. 7 shows the necessary aspects of  the back- 
reflection Latie geometry. The angle between a 
reflecting plane normal and the incident beam is 
o and the diffracted beam is coplanar with the 
incident beam and plane normal and makes an 
angle 20 with the incident beam. Since the crystal- 
to-film distance, IC, is known and the distance of  

IY 

D N 

x 

c 

Figure 7 Geometry of back-reflection Latie pattern. 
C= point o n  crystal surface; I = film centre; CN= 
plane normal; CD = diffracted beam; IC = incident 
beam. The coordinates of D are xL,Y  L. 

the diffracted beam spot from the film centre is 
rL = (X~ + y ~ ) l n ,  O is readily calculated from 

l [ ( x ~ +  y ~ ) t n ]  
a = -- tan -1 (31) 

2 t 7g j 

Using Equation 1 we can calculate the distance 
r of  the ( h k l )  pole on the projection from the 
centre of  the projection from 

r = R e tan (0/2) (32) 

Now, the vector from the film centre to the dif- 
fracted beam makes an angle ~ with the x-axis, 
as does the vector I N  which is the projection of  
the plane normal on the film. Therefore this 
angle must be preserved on the projection, which 
leads to  x L / r  L = x / r  = cos ~ and y L / r L  = y / r  = 

sin ~, or 

X L r  
X (X~ + y~)l/2 

__ y L r  
Y (x~ + y~)1/2 (33) 

3. Comparison with previous work 
This discussion will follow the sequence in which 
the geometrical analysis was presented. Methods 
for the computation o f  the x, y coordinates of  
the projection of  the endpoint of  a Cartesian 
vector onto the plane have been previously given 
by Mackenzie and Bowles [3] and by Johari and 
Thomas [4]. The method described in the present 
paper leads to the solution given by Equation 3, 
which is the same as that given previously by 
Mackenzie and Bowles. The derivation is included 
here for completeness, since it was not given by 
Mackenzie and Bowles. The method used by 
Johari and Thomas was far more cumbersome. 
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The treatment given here for the construction 
of great circles and small circles having centres 
on an axis in the projection plane has the advan- 
tage that it provides very simple expressions for 
the angular range of the arc of  the circle which 
lies within the basic circle, which is very useful 
in the computer program. Mackenzie and Bowles 
[3] gave equations for the centre and radius of  a 
general circle of angular range 72 from a central 
pole h k l (that is, the circle is the locus of the 
endpoints of all vectors at ~ degrees from [h kl] ). 
The radius is given by 

cos a 4- cos ~? 

and the centre coordinates are 

o s ( x 4 -  cos  , 

and 

cos 6 ~?) 

Y = cos oz 4- cos 

where e, 6 and /~ are the angles between [hkl] 
and the vectors [abe], [deft  and [uvw] as 
before. These relations reduce to the ones given 
earlier for the radii and centre distanes of  circles. 
However, they do not give the angular range of 
the arcs. The equation of the general circle has 
not been found necessary here, and has not been 
used. 

The derivation of expressions for the com- 
putation of h kt  from x, y involves the solution 
of three simultaneous equations involving cosa, 
cos6 and cos#. Mackenzie and Bowles [3] gave 
expressions which reduce to those given here 
in Equations 8 to 10 for these cosines, but did 
not provide the solution to the resulting equations, 
which is necessary for the determination of the 
indices of a point on a general projection. The 

solution can also be obtained by means of a 
subroutine involving Cramer's Rule. However, 
the closed form solution is given here because 
it is somewhat more compact in computer code. 
In fact, due to the similar forms of Equations 
11 and 13, the equations are solved in a short 
FOR loop in the program by permuting the 
subscripts. 

The solution of the problem of the rotation of 
one general pole about another was not previously 
discussed by either Mackenzie and Bowles or 
Johari and Thomas. The expressions of Mackenzie 
and Bowles for the centre and radius of a general 
circle give the locus of possible locations of the 
final pole, but no simpler method of finding 
the final location has been found than that given 
in Equations 17 to 19. 

The solution to the problem of conversion 
of crystal indices of planes to the x, y coordinates 
of the pole on the projection was not given by 
Mackenzie and Bowles [3], but a solution was 
given by Johari and Thomas [4]. Johari and 
Thomas began with the same choice of the 
relationship between the coordinate systems as 
used here (Fig. 6), and they derived expressions 
for unit vectors which are equivalent to those 
in Equations 21 to 23. However, at this point 
their approach diverged strongly from that used 
here. They derived expressions for the Cartesian 
vectors [100], [010] and [001], and employed 
these to arrive at expressions for the endpoint 
of the ( h k l )  plane normal in Cartesian space. 
Their approach necessitated the calculation 
of the length of the general reciprocal lattice 
vector in a triclinic crystal (which is very lengthy), 
and the solutions for the endpoint of the plane 
normal were also quite long in comparison with 
that embodied in Equations 24 to 26. The com- 
plete code for the calculation of the x, y coordi- 
nates of the pole of the (h k/) plane in a general 
crystal is given below using the present approach; 

370  I N P U T  " E N T E R  A , B , C " ; A , B , C  

380  I N P U T  " E N T E R  A L P H A ,  B E T A ,  G A M M A " ; A L , B E , G A  

390  A L  = A L *  PI / 1 8 0 : B E  = B E *  PI / 1 8 0 : G A  = G A *  Pl / 180 

4 0 0  A1 = A : A 2  = 0 : A 3  = 0 

410  B1 ----- B *  COS ( G A ) : B 2  = B *  SIN ( G A ) : B 3  -= 0 

420  C1 = COS (BE) 

430  C2 = ( C O S ( A L )  - -  COS (BE) * C O S ( G A ) )  / S I N  (GA)  

440  C3 = SQR (1 - -  C1 * C1 - - C 2 .  C2) 

450  C1 = C * C 1 : C 2  = C * C 2 : C 3  = C * C 3  

460  REM F U N C T I O N S  H1 ,  H2 and H3 C O N V E R T  A X T A L  P O L E  H K L  T O  

A N  R L P O L E  H 1 , H 2 ,  H3 

470  DEF FN H I ( X )  = H * B 2 *  C3 

4 1 1 3  



480 DEF 
490 DEF 

FN H2(X) = C 3 .  ( K * A 1 - - H  * B 1 )  
FN H3(X) = C2 .  (H *B1 - K * A 1 ) + B 2 . ( L . A 1  - 
H ' C 1 )  

1280 IF PD~ = "P"THEN L = FN H3(0): K = FN H2(0): 
H = FN HI(0) 

1290 HM = SQR (H * H + K *  K +  L *  L) 
1300 CA = ( A * H + B * K + C * L ) / ( A M * H M )  
1310 IF C A < 0 G O T O  1250 
1320 CD = (D*  H + E*  K + F *  L ) / ( D M *  HM) 
1330 CU = (U*  H + V *  K + W *  L) / ( U M *  HM) 
1340 X = R C * C U / ( I + C A )  
1350 Y = - - R C * C D / ( 1  +CA) 

Lines 370 and 380 request the lattice parameters, 
and lines 390 to 450 define A1 etc. according to 
Equations 21 to 23. Lines 470 through 490 define 
functions according to Equations 24 to 26, and 
lines 1280 through 1330 compute the vector for 
the plane normal and then compute cos ~, cos 6 
and cos /a (CA, CD and CU) from dot products. 
(DM and UM have been previously defined in the 
program as the magnitudes of [def] and [uvw], 
respectively.) Finally, lines 1340 and 1350 com- 
pute x and y. This code is considerably more 
condensed than that employed by Johari and 
Thomas. It is also noted that Johari and Thomas 
did not provide for the plotting of directions as 
well as poles. It should be noted that variables 
A, B and C are initially defined as the lattice para- 
meters A', B' and C'  and are later redefined to 
denote the projection axis [abc]. The lattice 
parameters are first used to define the necessary 
functions for conversions between the crystal 
and Cartesian coordinate systems. 

The procedure given here for the direct transfer 
of Laiie coordinates to the stereographic projec- 
tion has not been previously presented and should 
prove quite useful. 

An important difference between the present 
work and that of previous authors is that the 

~ i 1 ~ 1  

ITO ~ 1  1~3 

(a) 1 0 0 

techniques presented here represent a complete 
set of tools which allow the creation of general 
projections complete with great circles, and the 
solution of the most general stereographic problem 
using live interaction graphics on a modern micro- 
computer. This was the impetus for the solution 
of the problems involving the drawing of circles, 
the indexing of unknown poles, and the rotation 
of one general pole about another. 

4, Program description 
The complete computer program allows gener- 
ation on the screen of a stereographic projection 
of any orientation for any crystal system, com- 
plete with all the {100} and {1 10} great circles, 
within about one minute on an Apple II or lie 
microcomputer. Examples are shown in Figs. 
8 and 9 for cubic and orthorhombic crystals. 
It will be noted that the resolution of these 
figures is limited by the screen resolution of the 
microcomputer, since the plots were made on a 
dot-matrix printer using a screen-dump routine. 
Modification of the program to utilize an x - y  
plotter or to more effectively use the resolution 
of the dot-matrix printer will provide much 
better results. 

For hexagonal crystals, a minor modification 

1,: 

[~Tgure 8 Stereographic projections of a cubic crystal. (a) 001 ; (b) 311. 

4114 



0T0 "0 i l  ..~0~i ~--01'1 "0-1"0 \ /1110,. ] 

1~0 "-'----~J4~ 110 
(a) 1 0 0 

0~0 071 00t 011 010 

121 172 112121 \ +  + / /  
2TI 211 

.--,4..._,+- 
(hi 1 0 0 

Figure 9 Stereographic projections of an orthorhombic crystal with crystal axes a = 1, b = 1.5, c = 2.5. (a) 001; 
note that the direction [ 111 ] is indicated as 111 D; (b) same orientation, but showing all the 112 poles, drawn using 
menu selection 8. 

is made to convert crystal directions and poles 
into four-axis Miller-Bravais indices, and the 
appropriate additional great circles are drawn 
as in Fig. 10. Separate versions of  the program 
have been created for the cubic and hexagonal 
systems, and a general version is used for the 
remaining systems. In crystal systems other 
than cubic, the user is able to specify whether 
he wishes to plot poles or directions, and direc- 
tion indices are indicated by a trailing "D" (Fig. 
9). 

Any point on the screen may be indexed by 
moving a cursor to that point, and rotation of  one 
pole about another general pole may be accom- 
plished by specifying the poles either by use of  a 
cursor or by direct entry of  the pole indices. 
Fig. 11 shows the "menu" for the program. The 
various selections cause the program to branch 
to the appropriate subroutines, which will be 
described shortly. Fig. 12 shows a flow chart 
for the initial portion of  the program, which 
allows the user to specify the crystal lattice 
parameters and orientation. A new orientation 

may be chosen at any time by means of  menu 
selection 9, which simply returns to the point 
at which the orientation of  the central pole is 
chosen. For noncubic crystals, after the lattice 
parameters a, b and c and c~',/3' and 3<' are entered 
the program defines functions which allow calcu- 
lation of  Cartesian indices from crystal indices and 
vice versa, using Equations 21 to 30. 

The following paragraphs will outline the 
operation of  the various subroutines which are 
activated by the menu selections, and are organized 
in the order indicated by the menu. Fig. 13 shows 
a flow chart for the plotting of  a pole or direction 
with or without its great circle. Menu selection 2 
enters this routine after first asking for crystal 
indices, whether a pole or direction is to be 
plotted, and whether the great circle is to be 
plotted. The responses to the latter two questions 
are used to define token variables which determine 
the branches taken within the subroutine. Two 
special cases deserve comment. First, poles 
(vectors) making an obtuse angle with the central 
vector [abc] would plot outside the basic circle. 

5010 / l \  i-leO 

oT3 % 
0 

(o) 2110 

++1+ 

t~ \ l~.Tre1Tol-A/"~ 

( b ) ~  1 

Figure l 0 Stereographic projections of an hexagonal crystal with e/a ratio = 1.633. (a) 0 0 1 ; (b) 2 1 10. 
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1 MENU 
2 PLOT HKL POLE 
3 DRAW ALL i00 & ii0 GREAT CIRCLES 
4 INDEX POLE WITH CURSOR 
5 ROTATE POLE A ABOUT POLE B 
6 DRAW ROTATED WULFF NET 
7 CLEAR SCREEN 
8 PLOT ALL HKIL POLES 
9 NEW ORIENTATION 
i0 CHANGE INDEX ENTRY MODE 
ii CHANGE INDEX OUTPUT MODE 
12 SAVE TO DISC 
13 END 

Figure 11 Menu for the hexagonal version of the program. 
See text for explanation of the various selections. 

This is avoided by checking the dot product with 
[abc] and, if it is negative, reversing the signs of 
the indices before proceeding. Thus the negative 
of such a pole is plotted, and this must lie inside 
the basic circle. Secondly, for plotting the great 
circle of a pole lying on the outer circle, the 

radius calculated will be infinite. Thus circum- 
stance may be recognized by the condition 
[abc].[hkl] = 0 ,  and in this case a straight 
line is plotted. 

The circle drawing routine referred to in 
Fig. 13 simply draws straight line segments 
between specified points. These points are calcu- 
lated for great circles by assuming the centre of 
the great circle to lie on the x-axis and using 
Equations 4 and 5 to calculate several points 
on the circle, after which all points are rotated 
by the required amount using standard rotation 
of axes formulae. The same circle drawing routine 
is used for drawing the small circles on the Wulff 
net; the Wulff net subroutine uses Equations 6 
and 7 to calculate the points. 

The subroutine which is called by menu selec- 
tion 3 automatically draws the great circles of all 
the {100} and {110} poles by simply defining the 

Enter / 
Lattice 

Parameters 
l 

Define Functions ] 
h k l < = .  > Cartesian 

l 
Enter Indices / 

of Central Pole 

I 
I 
I 

Automatic l South Pole 
Definition 

Automatic l_ 
East Pole 

Definition F 

Draw [ 
Basic Circle 

! 
Enter / 
Menu 

Selection 
1 

Subroutines [ 

Yes 

Enter 
South Pole 

Indices 

I 
/ 

Figure 12 [:low chart of the initial portion 
of the program. 
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Calculate I Cartesian Indices 
of Pole 

I hkl 
Pole or D i r e c t i o n  

No 

Write Label 
on 

Screen 

Yes t 

Calculate I Circle 
Coordinates 

Circle Drawing I 
Subroutine 

Direction 

Calculate 
Cartesian Indices 

of Direction 

I 

Return 
r [  to Menu 

indices and calling the subroutine illustrated in 
Fig. 13. Similarly, menu selection 8 permutes the 
indices and plots all poles (or d i r ec t ions )o f  type 
h k l  (see Fig. 9b). 

Menu selection 4 activates a subroutine which 
allows indexing of  a pole by means of a cursor, 
utilizing Equations 8 to 13 to calculate the indices 
of  the pole or direction, and then converts the 
indices to integers. Naturally, the accuracy of  

Figure 13 Flow chart of the subroutine 
for plotting a pole or direction with or 
without its great circle and label, 

positioning the cursor is l imited by the screen 
resolution of  the computer.  Since the indices 
are generally irrational, there is necessarily some 
error in the integer indices, and the user may 
request the decimal indices if desired. Equations 
9 and 10 could be used to allow the user to enter 
the pole position by means of  the angles from 
the east and south if desired, which would be 
useful if it were desired to work directly from 
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Figure 14 Rotation of a general pole about another 
general pole by 360 ~ . Two examples are shown. 

an actual tracing since these angles could be 
measured using a Wulff net. 

The subroutine called by menu selection 5 
to rotate one pole about another first allows 
definition of  the poles by means of  the cursor 
routine or direct input of  indices. It then calcu- 
lates the decimal Cartesian indices of  these poles 
using the subroutine just described, and then 
applies Equations 14 to 19 to find the final 
position of  the pole after rotation. The rotation 
procedure is drawn on the screen by calculating 
the several intermediate locations on the circle 
swept out by the pole as it rotates, as shown 
in Fig. 14. 

Menu selection 6 calls a subroutine which 
calculates the coordinates of  the points on all 
the "meridians" and "parallels" (great and small 
circles) on a Wulff net with 30 ~ increments, 

rotates these circles by the amount requested, 
and calls the circle drawing subroutine to draw 
the rotated Wulff net. This routine is included 
primarily for instructional purposes. 

Menu selection 8 simply calls the pole and 
great circle routine (Fig. 13) with the appro- 
priate token variables defined so that the {1 1 1} 
poles are labelled but the circles are not drawn. 

Menu selections 10 and 11 allow the user to 
change the index entry and printout modes 
to either the standard three-axis or the four-axis 
Miller-Bravais system in the hexagonal version 
of  the program. 

A listing of  the program is not included here 
because of  its length and because of  the com- 
plicated naming of  the many variables required. 
A copy of  the listing will be provided by the 
author upon request. 
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